Monday, October 3, 2016

Eksponensiële Bewegende Gemiddelde Smoothing Konstante

Mark data Vrae Eksponensiële Versus Eenvoudige bewegende gemiddeldes Hi Tom - Ek is 'n intekenaar van joune en het gewonder of jy 'n ldquoconversionrdquo grafiek vir die omskakeling tendens waarde in tydperk eksponensiële MA gehad. byvoorbeeld, 10 Trend is rofweg gelykstaande aan 'n 19-tydperk EMO, 1 tendens 200EMA ens Dankie by voorbaat. Die formule vir die omskakeling van 'n eksponensiële bewegende gemiddelde (EMA) glad konstante 'n aantal dae is: 2 mdashmdashmdash - N 1 waar n die aantal dae. Dus, sou 'n 19-dag EMO pas in die formule soos volg: 2 2 mdashmdashmdashmdash - mdashmdashmdash - 0.10, of 10 19 1 20 Dit spruit uit die idee dat die glad konstante gekies ten einde dieselfde gemiddelde ouderdom van die data gee as sou moes in 'n eenvoudige bewegende gemiddelde. As jy 'n 20 tydperk eenvoudige bewegende gemiddelde het, dan is die gemiddelde ouderdom van elke data insette is 9.5. Mens sou dink dat die gemiddelde ouderdom 10 moet wees, want dit is die helfte van 20, of 10,5 want dit is die gemiddeld van die getalle 1 tot 20. Maar in statistiese konvensie, die ouderdom van die mees onlangse stukkie data is 0. So vind die gemiddelde ouderdom van die afgelope twintig datapunte word gedoen deur die vind van die gemiddelde van hierdie reeks: So het die gemiddelde ouderdom van data in 'n stel van n periodes gegee word: n - 1 mdashmdashmdashmdash - 2 Vir eksponensiële gladstryking, met 'n glad konstante van 'n dit blyk uit die wiskunde van opsomming teorie dat die gemiddelde ouderdom van die data is: 1 - 'n mdashmdashmdashmdash - n Kombinasie van hierdie twee vergelykings: 1 - 'n - 1 mdashmdashmdash mdashmdashmdashmdash a 2 ons kan los vir 'n waarde van a wat 'n gelykstaande EMO 'n eenvoudige bewegende gemiddelde lengte as: 2 a mdashmdashmdashmdash - n 1 Jy kan een van die oorspronklike stukke ooit oor hierdie konsep deur te gaan na McClellanMTAaward. pdf geskryf lees. Daar het ons uittreksel uit P. N. Haurlanrsquos pamflet, ldquoMeasuring Trend Valuesrdquo. Haurlan was een van die eerste mense om eksponensiële bewegende gemiddeldes gebruik om aandele pryse terug in die 1960's op te spoor, en ons nog steeds verkies sy oorspronklike terme van 'n XX Trend, eerder as 'n beroep 'n eksponensiële bewegende gemiddelde deur sommige aantal dae. Een groot rede hiervoor is dat met 'n eenvoudige bewegende gemiddelde (SMA), is jy net 'n terugblik n sekere aantal dae. Enigiets ouer as wat Terugblik tydperk nie faktor in die berekening. Maar met 'n EMO, die ou data verdwyn nooit dit net al hoe minder belangrik om die waarde van die bewegende gemiddelde word. Om te verstaan ​​waarom tegnici omgee EMA versus SMAs, 'n vinnige blik op hierdie grafiek bied 'n paar 'n illustrasie van die verskil. Tydens trending beweeg opwaarts of afwaarts, sal 'n 10 tendens en 'n 19-dag SMA grootliks reg saam. Dit is in tye wanneer pryse is woelig, of wanneer die tendens rigting verander, dat ons sien die twee begin om uitmekaar te beweeg. In sulke gevalle sal die 10 Trend gewoonlik drukkie die prys aksie van naderby, en dus in 'n beter posisie om 'n verandering te dui wanneer die prys kruis nie. Vir baie mense, die eiendom maak EMA ldquobetterrdquo as SMAs, maar ldquobetterrdquo is in die oë van die waarnemer. Die rede waarom ingenieurs gebruik EMA vir die jaar, veral in elektronika, is dat hulle makliker om te bereken. Om todayrsquos nuwe EMO waarde te bepaal, jy hoef net yesterdayrsquos EMO waarde, die glad konstante, en todayrsquos nuwe sluitingsprys (of ander datum). Maar om 'n SMA bereken, moet jy elke waarde terug in die tyd vir die hele Terugblik period. Forecasting weet gladstrykingstegnieke Hierdie webwerf is 'n deel van die JavaScript E-laboratoriums leer voorwerpe vir besluitneming. Ander JavaScript in hierdie reeks is verdeel onder verskillende gebiede van aansoeke in die menu artikel op hierdie bladsy. 'N tyd-reeks is 'n reeks waarnemings wat bestel betyds. Inherent in die versameling van data geneem met verloop van tyd is 'n vorm van ewekansige variasie. Daar bestaan ​​metodes vir die vermindering van van die kansellasie van die effek as gevolg van ewekansige variasie. Gebruikte tegnieke is glad. Hierdie tegnieke, wanneer dit behoorlik toegepas word, blyk duidelik die onderliggende tendense. Tik die tydreeks Ry-wyse in volgorde, vanaf die linker-boonste hoek, en die parameter (s), dan op die Bereken knoppie vir die verkryging van een tydperk lig vooruitskatting. Leeg bokse is nie ingesluit in die berekeninge, maar nulle is. In die begin van jou data om te beweeg van sel tot sel in die data-oorsig gebruik die Tab-sleutel nie arrow of betree sleutels. Kenmerke van tydreekse, wat geopenbaar kan word deur die ondersoek van die grafiek. met die geskatte waardes, en die residue gedrag, toestand voorspelling modelle. Bewegende gemiddeldes: bewegende gemiddeldes rang onder die gewildste tegnieke vir die preprocessing van tydreekse. Hulle word gebruik om ewekansige wit geraas filter uit die data, om die tydreeks gladder te maak of selfs om sekere inligting komponente vervat in die tydreeks te beklemtoon. Eksponensiële Smoothing: Dit is 'n baie gewilde skema om 'n reëlmatige Tyd Reeks produseer. Terwyl dit in Bewegende Gemiddeldes die afgelope waarnemings word dieselfde gewig, eksponensiële Smoothing ken eksponensieel afneem gewigte as die waarneming ouer. Met ander woorde, is Onlangse waarnemings gegee relatief meer gewig in vooruitskatting as die ouer waarnemings. Double Eksponensiële Smoothing is beter op tendense hantering. Drie Eksponensiële Smoothing beter te hanteer parabool tendense. 'N exponenentially geweeg bewegende gemiddelde met 'n glad konstante a. ooreenstem rofweg 'n eenvoudige bewegende gemiddelde lengte (bv tydperk) n, waar n en N verwant deur: 'n 2 / (N1) of N (2 - a) / n. So, byvoorbeeld, 'n exponenentially geweeg bewegende gemiddelde met 'n glad konstante gelyk aan 0,1 sou rofweg ooreen met 'n 19 dag bewegende gemiddelde. En 'n 40-dag eenvoudig bewegende gemiddelde sou rofweg ooreen met 'n eksponensieel geweeg bewegende gemiddelde met 'n glad konstante gelyk aan 0,04878. Holts Lineêre Eksponensiële Smoothing: Veronderstel dat die tydreeks is nie-seisoenale maar wel vertoon tendens. Holts metode skat beide die huidige vlak en die huidige tendens. Let daarop dat die eenvoudige bewegende gemiddelde is spesiale geval van die eksponensiële gladstryking deur die oprigting van die tydperk van die bewegende gemiddelde van die heelgetal deel van (2-Alpha) / Alpha. Vir die meeste sake-data 'n Alpha parameter kleiner as 0.40 is dikwels doeltreffend. Dit kan egter 'n mens 'n rooster op soek na die parameter ruimte uit te voer, met 0,1-0,9, met inkremente van 0.1. Toe het die beste alfa die kleinste gemiddelde absolute fout (MA Fout). Hoe om 'n paar glad metodes te vergelyk: Alhoewel daar numeriese aanwysers vir die beoordeling van die akkuraatheid van die voorspelling tegniek, die mees benadering is in die gebruik van visuele vergelyking van verskeie voorspellings oor die akkuraatheid daarvan te evalueer en kies tussen die verskillende vooruitskatting metodes. In hierdie benadering, moet 'n mens stip op dieselfde grafiek die oorspronklike waardes van 'n tydreeks veranderlike en die voorspelde waardes van verskillende vooruitskatting metodes (met behulp van, bv Excel), dus 'n visuele vergelyking fasilitering. Jy kan hou die gebruik van die verlede Voorspellings deur gladstrykingstegnieke JavaScript om die verlede voorspel waardes gebaseer op gladstrykingstegnieke dat slegs enkele parameter gebruik te verkry. Holt, en winters metodes gebruik twee en drie parameters, onderskeidelik, dus is dit nie 'n maklike taak om die optimale, of selfs naby optimale waardes kies deur probeer-en foute vir die parameters. Die enkele eksponensiële gladstryking beklemtoon die kort reeks perspektief dit stel die vlak van die laaste waarneming en is gebaseer op die voorwaarde dat daar geen tendens. Die lineêre regressie, wat 'n lyn van kleinste kwadrate op die historiese data (of omskep historiese data) pas, stel die lang reeks, wat gekondisioneer op die basiese tendens. Holts lineêre eksponensiële gladstryking vang inligting oor onlangse tendens. Die parameters in Holts model is vlakke-parameter wat moet verminder word wanneer die hoeveelheid data wat variasie is groot, en tendense-parameter moet verhoog word indien die onlangse tendens rigting word ondersteun deur die oorsaaklike paar faktore. Korttermyn vooruitskatting: Let daarop dat elke JavaScript op hierdie bladsy bied 'n een-stap-ahead skatting. Om 'n twee-stap-ahead voorspelling te kry. eenvoudig die geskatte waarde toevoeg tot die einde van jou tydreeksdata en kliek dan op dieselfde Bereken knoppie. Jy kan hierdie proses herhaal vir 'n paar keer om die nodige kort termyn verkry forecasts. Simple Vs. Eksponensiële Bewegende Gemiddeldes bewegende gemiddeldes is meer as die studie van 'n ry getalle in opeenvolgende orde. Vroeë beoefenaars van tydreeksanalise was eintlik meer bekommerd oor individuele nommers tydreekse as wat hulle was met die interpolasie van daardie data. Interpolasie. in die vorm van waarskynlikheid teorieë en ontleding, het veel later, as patrone ontwikkel en korrelasies ontdek. Sodra verstaan, verskeie gevormde kurwes en lyne is getrek langs die tydreeks in 'n poging om te voorspel waar die datapunte te gaan. Dit is nou beskou as basiese metodes wat tans gebruik word deur tegniese ontleding handelaars. Kartering analise kan teruggevoer word na 18de eeu Japan, nog hoe en wanneer bewegende gemiddeldes vir die eerste keer toegepas op markpryse bly 'n raaisel. Dit is oor die algemeen verstaan ​​so eenvoudig bewegende gemiddeldes (SMA) lank gebruik voordat eksponensiële bewegende gemiddeldes (EMA), want EMA is gebou op SMA raamwerk en die SMA kontinuum is makliker verstaan ​​vir die plot en die dop. (Wil jy 'n bietjie agtergrond lees Kyk bietjie na Bewegende Gemiddeldes: Wat is dit) Eenvoudige bewegende gemiddelde (SMA) Eenvoudige bewegende gemiddeldes is die voorkeur-metode vir die dop van markpryse, want hulle is vinnig om te bereken en maklik om te verstaan. Vroeë mark praktisyns bedryf word sonder die gebruik van die gesofistikeerde grafiek statistieke in gebruik vandag, sodat hulle staatgemaak hoofsaaklik op markpryse as hul uitsluitlike gidse. Hulle bereken markpryse met die hand, en weergegee daardie pryse te tendense en die mark rigting aan te dui. Hierdie proses was nogal vervelig, maar bewys baie winsgewend met bevestiging van verdere studies. Om 'n 10-dag eenvoudig bewegende gemiddelde te bereken, net voeg die sluitingsdatum pryse van die afgelope 10 dae en deel dit deur 10. Die 20-dae - bewegende gemiddelde word bereken deur die sluiting pryse oor 'n tydperk van 20 dae en deel dit deur 20, en so aan. Hierdie formule is nie net gebaseer op sluitingstyd pryse, maar die produk is 'n gemiddelde van pryse - 'n subset. Bewegende gemiddeldes is genoem beweeg omdat die groep pryse wat in die berekening skuif na gelang van die punt op die grafiek. Dit beteken ou dae is ten gunste van nuwe sluitingsprys dae gedaal, sodat 'n nuwe berekening altyd nodig wat ooreenstem met die tyd van die gemiddelde diens. So, is 'n 10-dag gemiddelde herbereken deur die toevoeging van die nuwe dag en die weglating van die 10de dag, en die negende dag laat val op die tweede dag. (Vir meer inligting oor hoe kaarte word gebruik in valuta handel, kyk na ons Chart Basics Walk.) Eksponensiële bewegende gemiddelde (EMA) Die eksponensiële bewegende gemiddelde het verfyn en meer algemeen gebruik word sedert die 1960's, danksy vroeër praktisyns eksperimente met die rekenaar. Die nuwe EMO sal meer oor die mees onlangse pryse fokus eerder as op 'n lang reeks van data punte, soos die eenvoudige bewegende gemiddelde vereis. Huidige EMO ((Prys (huidige) - vorige EMO)) X vermenigvuldiger) vorige EMO. Die belangrikste faktor is die glad konstante dat 2 / (1 N) waar N die aantal dae. 'N 10-dag EMO 2 / (101) 18.8 Dit beteken 'n 10-tydperk EMO gewigte die mees onlangse prys 18.8, 'n 20-dag EMO 9,52 en 50-dag EMO 3,92 gewig op die mees onlangse dag. Die EMO werk bereken deur die verskil tussen die huidige tye prys en die vorige EMO, en die toevoeging van die resultaat van die vorige EMO. Hoe korter die tydperk, hoe meer gewig toegepas op die mees onlangse prys. Pas Lines Deur hierdie berekeninge, is punte geplot, die onthulling van 'n gepaste lyn. Pas lyne bo of onder die markprys aan te dui dat alle bewegende gemiddeldes is agter aanwysers. en is hoofsaaklik gebruik word vir volgende tendense. Hulle hoef goed te werk met verskeie markte en periodes van opeenhoping omdat die pas lyne versuim om 'n tendens dui as gevolg van 'n gebrek aan duidelik hoër hoogtes of laer laagtepunte. Plus, pas lyne is geneig konstant bly sonder aanduiding van rigting. 'N stygende pas lyn onder die mark te kenne dat 'n lang, terwyl 'n dalende pas lyn bo die mark te kenne dat 'n kort. (Vir 'n volledige gids, lees ons Moving Gemiddelde handleiding.) Die doel van die gebruik van 'n eenvoudige bewegende gemiddelde is om raak te sien en te meet tendense deur glad die data met behulp van die middel van verskeie groepe van pryse. 'N tendens is raakgesien en geëkstrapoleer tot 'n skatting. Die veronderstelling is dat voor tendens bewegings sal voortgaan. Vir die eenvoudige bewegende gemiddelde, kan 'n langtermyn-tendens gevind en gevolg veel makliker as 'n EMO, met 'n redelike aanname dat die pas lyn sterker as 'n EMO lyn sal hou as gevolg van die langer fokus op gemiddelde pryse. 'N EMO gebruik word om korter tendens beweeg vang, te danke aan die fokus op mees onlangse pryse. Deur hierdie metode, 'n EMO veronderstel om enige lags in die eenvoudige bewegende gemiddelde verminder sodat die gepaste lyn pryse nader as 'n eenvoudige bewegende gemiddelde sal omhels. Die probleem met die EMO is dit: Die geneig om prys breek, veral tydens vinnig markte en periodes van onbestendigheid. Die EMO werk goed totdat pryse breek die gepaste lyn. Tydens hoër wisselvalligheid markte, kan jy kyk na die verhoging van die lengte van die bewegende gemiddelde termyn. 'N Mens kan selfs skakel van 'n EMO 'n SMA, aangesien die SMA stryk uit die data baie beter as 'n EMO as gevolg van sy fokus op langer termyn beteken. Tendens-volgende aanduiders Soos sloerende aanwysers, bewegende gemiddeldes te dien asook ondersteuning en weerstand lyne. As pryse te breek onder 'n 10-dag pas lyn in 'n opwaartse neiging, is die kanse is goed dat die opwaartse neiging kan afneem, of ten minste die mark kan konsolideer. As pryse te breek bo 'n 10-dae bewegende gemiddelde in 'n verslechtering neiging. die tendens kan wees besig om te kwyn of te konsolideer. In hierdie gevalle, gebruik 'n 10- en 20- daagse bewegende gemiddelde saam, en wag vir die 10-dae reël om bo of onder die 20-dag lyn oor te steek. Dit bepaal die volgende kort termyn rigting vir pryse. Vir tydperke langer termyn, kyk na die 100 en 200-dae - bewegende gemiddeldes vir rigting langer termyn. Byvoorbeeld, met behulp van die 100 en 200-dae - bewegende gemiddeldes, indien die 100-daagse bewegende gemiddelde kruise onder die 200-dag gemiddeld sy genoem die dood kruis. en is baie lomp vir pryse. A 100-daagse bewegende gemiddelde wat kruise bo 'n 200-daagse bewegende gemiddelde staan ​​bekend as die goue kruis. en is baie positief vir pryse. Dit maak nie saak as 'n SMA of 'n EMO gebruik word, want albei is-tendens volgende aanwysers. Sy enigste in die kort termyn wat die SMA het effense afwyking van sy eweknie, die EMO. Gevolgtrekking bewegende gemiddeldes is die basis van grafiek en tydreeksanalise. Eenvoudige bewegende gemiddeldes en die meer komplekse eksponensiële bewegende gemiddeldes te help visualiseer die tendens deur glad uit prysbewegings. Tegniese ontleding is ook soms na verwys as 'n kuns eerder as 'n wetenskap, wat albei jare neem om te bemeester. (Hier is meer in ons Tegniese Analise handleiding.) Eksponensiële bewegende gemiddelde - EMO laai die speler. Afbreek van Eksponensiële bewegende gemiddelde - EMO Die 12- en 26-dag EMA is die gewildste kort termyn gemiddeldes, en hulle word gebruik om aanwysers soos die bewegende gemiddelde konvergensie divergensie (MACD) en die persentasie prys ossillator (PPO) te skep. In die algemeen, is die 50- en 200-dag EMA as seine van 'n lang termyn tendense. Handelaars wat tegniese ontleding diens vind bewegende gemiddeldes baie nuttig en insiggewend wanneer dit korrek toegepas word, maar skep chaos wanneer onbehoorlik gebruik of verkeerd verstaan. Al die bewegende gemiddeldes wat algemeen gebruik word in tegniese ontleding is, volgens hulle aard, sloerende aanwysers. Gevolglik moet die afleidings wat op die toepassing van 'n bewegende gemiddelde op 'n bepaalde mark grafiek wees om 'n mark skuif bevestig of om sy krag te toon. Heel dikwels is, teen die tyd dat 'n bewegende gemiddelde aanwyser lyn het 'n verandering aan 'n beduidende stap in die mark weerspieël gemaak het die optimale punt van toegang tot die mark reeds geslaag. 'N EMO nie dien om hierdie dilemma te verlig tot 'n mate. Omdat die EMO berekening plaas meer gewig op die jongste data, dit drukkies die prys aksie 'n bietjie stywer en reageer dus vinniger. Dit is wenslik wanneer 'n EMO word gebruik om 'n handels inskrywing sein herlei. Interpretasie van die EMO Soos alle bewegende gemiddelde aanwysers, hulle is baie meer geskik vir trending markte. Wanneer die mark is in 'n sterk en volgehoue ​​uptrend. die EMO aanwyser lyn sal ook 'n uptrend en andersom vir 'n down tendens toon. A waaksaam handelaar sal nie net aandag te gee aan die rigting van die EMO lyn, maar ook die verhouding van die tempo van verandering van die een bar na die volgende. Byvoorbeeld, as die prys aksie van 'n sterk uptrend begin plat en reverse, van die EMAS tempo van verandering van die een bar na die volgende sal begin om te verminder tot tyd en wyl die aanwyser lyn plat en die tempo van verandering is nul. As gevolg van die sloerende uitwerking, deur hierdie punt, of selfs 'n paar bars voor, die prys aksie moet reeds omgekeer. Dit volg dus dat die waarneming van 'n konsekwente verminderde in die tempo van verandering van die EMO kon self gebruik word as 'n aanduiding dat die dilemma wat veroorsaak word deur die sloerende uitwerking van bewegende gemiddeldes verder kon teen te werk. Algemene gebruike van die EMO EMA word algemeen gebruik word in samewerking met ander aanwysers aan beduidende mark beweeg bevestig en om hul geldigheid te meet. Vir handelaars wat intraday en vinnig bewegende markte handel te dryf, die EMO is meer van toepassing. Dikwels handelaars gebruik EMA om 'n handels vooroordeel bepaal. Byvoorbeeld, as 'n EMO op 'n daaglikse grafiek toon 'n sterk opwaartse neiging, kan 'n intraday handelaars strategie wees om net handel van die lang kant op 'n intraday chart. Exponential Filter Hierdie bladsy beskryf eksponensiële filter, die eenvoudigste en mees gewilde filter. Dit is deel van die artikel filter wat deel is van 'n Gids tot Fout opsporing en diagnose .. Oorsig, tydkonstante, en analoog gelykstaande Die eenvoudigste filter is die eksponensiële filter. Dit het net een stem parameter (behalwe die voorbeeld interval). Dit vereis dat die berging van slegs een veranderlike - die vorige uitset. Dit is 'n IIR (outoregressiewe) filter - die gevolge van 'n inset verandering verval eksponensieel tot die grense van uitstallings of rekenaar rekenkundige wegsteek nie. In verskeie dissiplines, is die gebruik van hierdie filter ook verwys na as 8220exponential smoothing8221. In sommige dissiplines soos belegging analise, is die eksponensiële filter genoem 'n 8220Exponentially Geweegde Moving Average8221 (EWMA), of net 8220Exponential Moving Average8221 (EMA). Dit misbruik die tradisionele ARMA 8220moving average8221 terminologie van tydreeksanalise, want daar is geen insette geskiedenis wat gebruik word - net die huidige insette. Dit is die diskrete tyd ekwivalent van die 8220first orde lag8221 algemeen gebruik in analoog modellering van kontinue-tyd stelsels. In elektriese stroombane, 'n RC filter (filter met een weerstand en een kapasitor) is 'n eerste-orde lag. Wanneer die klem op die analogie te analoog stroombane, die enkele stem parameter is die 8220time constant8221, gewoonlik geskryf as die kleinletter Griekse letter Tau (). Trouens, die waardes van die diskrete monster tye presies ooreenstem met die ekwivalent deurlopende tydsverloop met dieselfde tyd konstant. Die verhouding tussen die digitale implementering en die tydkonstante word in die onderstaande vergelykings. Eksponensiële filter vergelykings en inisialisering Die eksponensiële filter is 'n geweegde kombinasie van die vorige skatting (uitset) met die nuutste insette data, met die som van die gewigte gelyk aan 1 sodat die uitset ooreenstem met die insette by gestadigde toestande. Na aanleiding van die filter notasie reeds bekendgestel: y (k) ay (k-1) (1-a) x (k) waar x (k) is die rou insette ten tye stap ky (k) is die gefilterde uitset ten tye stap ka is 'n konstante tussen 0 en 1, gewoonlik tussen 0.8 en 0.99. (A-1) of 'n word soms die 8220smoothing constant8221. Vir stelsels met 'n vaste tyd stap T tussen monsters, is die konstante 8220a8221 bereken en gestoor vir die gemak net vir die program ontwikkelaar spesifiseer 'n nuwe waarde van die verlangde tyd konstant. Vir stelsels met monsterneming data op ongereelde tussenposes, moet die eksponensiële funksie hierbo gebruik word met elke keer stap, waar t die tyd sedert die vorige voorbeeld. Die filter uitset is gewoonlik geïnisialiseer die eerste insette te pas. Soos die tydkonstante benaderings 0, 'n gaan na nul, so daar is geen filter 8211 die uitset is gelyk aan die nuwe insette. Soos die tydkonstante kry baie groot, 'n benaderings 1, sodat nuwe insette byna geïgnoreer 8211 baie swaar filter. Die filter vergelyking hierbo kan herrangskik in die volgende voorspeller-corrector ekwivalent: Hierdie vorm maak dit meer duidelik dat die veranderlike skatting (uitset van die filter) word voorspel as onveranderd teenoor die vorige skatting y (k-1) plus 'n regstelling termyn gebaseer op die onverwagte 8220innovation8221 - die verskil tussen die nuwe insette x (k) en die voorspelling y (k-1). Hierdie vorm is ook die gevolg van die afleiding van die eksponensiële filter as 'n eenvoudige spesiale geval van 'n Kalman filter. wat is die optimale oplossing vir 'n skatting probleem met 'n bepaalde stel aannames. Stap reaksie Een manier om te visualiseer die werking van die eksponensiële filter is om sy reaksie verloop van tyd tot 'n stap insette plot. Dit wil sê, wat begin met die filter toevoer en afvoer by 0, is die insetwaarde skielik verander na 1. Die gevolglike waardes word hieronder aangestip: In die bogenoemde plot, is die tyd gedeel deur die filter tydkonstante TLU, sodat jy kan meer maklik voorspel die resultate vir enige tydperk, vir enige waarde van die filter tydkonstante. Na 'n tyd gelyk aan die tydkonstante, die filter uitset styg tot 63,21 van sy finale waarde. Na 'n tyd gelyk aan 2 keer konstantes, die waarde styg tot 86,47 van sy finale waarde. Die uitset na tye gelyk aan 3,4 en 5 keer konstantes is 95,02, 98,17, en 99,33 van die finale waarde, onderskeidelik. Sedert die filter is lineêre, beteken dit dat hierdie persentasies kan gebruik word vir enige grootte van die stapverandering, nie net vir die waarde van 1 wat hier gebruik word. Hoewel die stap reaksie in teorie neem 'n oneindige tyd, uit 'n praktiese oogpunt, dink aan die eksponensiële filter as 98-99 8220done8221 reageer ná 'n tyd gelyk aan 4 tot 5 filter tyd konstantes. Variasies op die eksponensiële filter Daar is 'n variasie van die eksponensiële filter bekend as 'n 8220nonlinear eksponensiële filter8221 Weber, 1980 bedoel om swaar filter geraas binne 'n sekere 8220typical8221 amplitude, maar dan vinniger te reageer op groter veranderinge. Kopiereg 2010 - 2013, Greg Stanley Deel hierdie bladsy:


No comments:

Post a Comment